Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(5): e15575, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37153391

RESUMO

The presence of heavy metal, chromium (VI), in water environments leads to various diseases in humans, such as cancer, lung tumors, and allergies. This review comparatively examines the use of several adsorbents, such as biosorbents, activated carbon, nanocomposites, and polyaniline (PANI), in terms of the operational parameters (initial chromium (VI) concentration (Co), temperature (T), pH, contact time (t), and adsorbent dosage) to achieve the Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption. The study finds that the use of biosorbents (fruit bio-composite, fungus, leave, and oak bark char), activated carbons (HCl-treated dry fruit waste, polyethyleneimine (PEI) and potassium hydroxide (KOH) PEI-KOH alkali-treated rice waste-derived biochar, and KOH/hydrochloric acid (HCl) acid/base-treated commercial), iron-based nanocomposites, magnetic manganese-multiwalled carbon nanotubes nanocomposites, copper-based nanocomposites, graphene oxide functionalized amino acid, and PANI functionalized transition metal are effective in achieving high Langmuir's maximum adsorption capacity (qm) for chromium (VI) adsorption, and that operational parameters such as initial concentration, temperature, pH, contact time, and adsorbent dosage significantly affect the Langmuir's maximum adsorption capacity (qm). Magnetic graphene oxide functionalized amino acid showed the highest experimental and pseudo-second-order kinetic model equilibrium adsorption capacities. The iron oxide functionalized calcium carbonate (IO@CaCO3) nanocomposites showed the highest heterogeneous adsorption capacity. Additionally, Syzygium cumini bark biosorbent is highly effective in treating tannery industrial wastewater with high levels of chromium (VI).

2.
Environ Res ; 222: 115337, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36682442

RESUMO

MXene is a magical class of 2D nanomaterials and emerging in many applications in diverse fields. Due to the multiple advantageous characteristics of its fundamental components, such as structural, physicochemical, optical, and occasionally even biological characteristics. However, it is limited in the biomedical industry due to poor physiological stability, decomposition rate, and lack of controlled and sustained drug release. These limitations can be overcome when MXene forms composites with other 2D materials. The efficiency of pure MXene in biomedicine is inferior to that of MXene-based composites. The availability of functionality on the exterior part of MXene has a key role in the modification of their surface and their characteristics. This review provides an extensive discussion on the synthesizing of MXene and the role of the surface functionalities on the efficiency of MXene. In addition, a detailed discussion of the biomedical applications of MXene, including antibacterial activity, regenerative medicine, CT scan capability, drug delivery, diagnostics, MRI and biosensing capability. Furthermore, an outline of the future problems and challenges of MXene-based materials for biomedical applications was narrated. Thus, these salient features showcase the potential of MXene-based material and will be a breakthrough in biomedical applications in the near future.


Assuntos
Antibacterianos , Nanoestruturas , Sistemas de Liberação de Medicamentos , Indústrias
3.
Environ Res ; 222: 115279, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36706895

RESUMO

Over the last few years, electroanalysis has made significant advancements, particularly in developing electrochemical sensors. Electrochemical sensors generally include emerging Photoelectrochemical and Electrochemiluminescence sensors, which combine optical techniques and traditional electrochemical bio/non-biosensors. Numerous EC-detecting methods have also been designed for commercial applications to detect biological and non-biological markers for various diseases. Analytical applications have recently focused significantly on one of the novel nanomaterials, the MXene. This material is being extensively investigated for applications in electrochemical sensors due to its unique mechanical, electronic, optical, active functional groups and thermal characteristics. This study extensively discusses the salient features of MXene-based electrochemical sensors, photoelectrochemical sensors, enzyme-based biosensors, immunosensors, aptasensors, electrochemiluminescence sensors, and electrochemical non-biosensors. In addition, their performance in detecting various substances and contaminants is thoroughly discussed. Furthermore, the challenges and prospects the MXene-based electrochemical sensors are elaborated.


Assuntos
Técnicas Biossensoriais , Nanoestruturas , Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Imunoensaio , Nanoestruturas/química
4.
Chemosphere ; 314: 137643, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36581116

RESUMO

MXenes are an innovative class of 2D nanostructured materials gaining popularity for various uses in medicine, chemistry, and the environment. A larger outer layer area, exceptional stability and conductivity of heat, high porosity, and environmental friendliness are all characteristics of MXenes and their composites. As a result, MXenes have been used to produce Li-ion batteries, semiconductors, water desalination membranes, and hydrogen storage. MXenes have recently been used in many environmental remediations, frequently surpassing conventional materials, to treat groundwater contamination, surface waters, industrial and municipal wastewaters, and desalination. Due to their outstanding structural characteristics and the enormous specific surface area, they are widely utilized as adsorbents or membrane materials for the desalination of seawater. When used for electrochemical applications, MXene-composites can deionize via Faradaic capacitive deionization (CDI) and adsorb various organic and inorganic pollutants to treat the water. In general, as compared to other 2D nanomaterials, MXene has superb characteristics; because of their magnificent characteristics and they exhibit strong desalination capability. The current review paper discusses the desalination capability of MXenes and their composites. Focusing on the desalination capacity of MXene-based nanomaterials, this study discusses the characteristics and synthesis techniques of MXenes their composites along with their ion-rejection capability and pervaporation desalination of water via MXene-based membranes, capacitive deionization capability, solar desalination capability. Furthermore, the challenges and prospects of MXenes and their composites are highlighted.


Assuntos
Água do Mar , Água , Contaminação de Medicamentos , Condutividade Elétrica
5.
Chemosphere ; 313: 137497, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36493892

RESUMO

Multiple ecological contaminants in gaseous, liquid, and solid forms are vented into ecosystems due to the huge growth of industrialization, which is today at the forefront of worldwide attention. High-efficiency removal of these environmental pollutants is a must because of the potential harm to public health and biodiversity. The alarming concern has led to the synthesis of improved nanomaterials for removing pollutants. A path to innovative methods for identifying and preventing several obnoxious, hazardous contaminants from entering the environment is grabbing attention. Various applications in diverse industries are seen as a potential directions for researchers. MXene is a new, excellent, and advanced material that has received greater importance related to the environmental application. Due to its unique physicochemical and mechanical properties, high specific surface area, physiological compatibility, strong electrodynamics, and raised specific surface area wettability, its applications are growing. This review paper examines the most recent methods and trends for environmental pollutant removal using advanced 2D Mxene materials. In addition, the history and the development of MXene synthesis were elaborated. Furthermore, an extreme summary of various environmental pollutants removal has been discussed, and the future challenges along with their future perspectives have been illustrated.


Assuntos
Poluentes Ambientais , Recuperação e Remediação Ambiental , Ecossistema , Biodiversidade
6.
Chemosphere ; 311(Pt 2): 137056, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332734

RESUMO

Water consumption has grown in recent years due to rising urbanization and industry. As a result, global water stocks are steadily depleting. As a result, it is critical to seek strategies for removing harmful elements from wastewater once it has been cleaned. In recent years, many studies have been conducted to develop new materials and innovative pathways for water purification and environmental remediation. Due to low energy consumption, low operating cost, and integrated facilities, membrane separation has gained significant attention as a potential technique for water treatment. In these directions, MXene which is the advanced 2D material has been explored and many applications were reported. However, research on MXene-based membranes is still in its early stages and reported applications are scatter. This review provides a broad overview of MXenes and their perspectives, including their synthesis, surface chemistry, interlayer tuning, membrane construction, and uses for water purification. Application of MXene based membrane for extracting pollutants such as heavy metals, organic contaminants, and radionuclides from the aqueous water bodies were briefly discussed. Furthermore, the performance of MXene-based separation membranes is compared to that of other nano-based membranes, and outcomes are very promising. In order to shed more light on the advancement of MXene-based membranes and their operational separation applications, significant advances in the fabrication of MXene-based membranes is also encapsulated. Finally, future prospects of MXene-based materials for diverse applications were discussed.

7.
Sci Rep ; 12(1): 13417, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35927289

RESUMO

This paper studies an adjacent accumulation discrete grey model to improve the prediction of the grey model and enhance the utilization of new data. The impact of COVID-19 on the global economy is also discussed. Two cases are discussed to prove the stability of the adjacent accumulation discrete grey model, which helped the studied model attain higher forecasting accuracy. Using the adjacent accumulation discrete grey model, non-renewable energy consumption in G20 countries from 2022 to 2026 is predicted based on their consumption data from 2011 to 2021. It is proven that the adjacent accumulation exhibits sufficient accuracy and precision. Forecasting results obtained in this paper show that energy consumption of all the non-renewable sources other than coal has an increasing trend during the forecasting period, with the USA, Russia, and China being the biggest consumers. Natural gas is the most consumed non-renewable energy source between 2022 and 2026, whereas hydroelectricity is the least consumed. The USA is the biggest consumer of Nuclear energy among the G20 countries, whereas Argentina consumed only 0.1 Exajoules of nuclear energy, placing it at the end of nuclear energy consumers.


Assuntos
COVID-19 , COVID-19/epidemiologia , Dióxido de Carbono/análise , Carvão Mineral , Desenvolvimento Econômico , Previsões , Humanos , Gás Natural
8.
Environ Sci Pollut Res Int ; 28(39): 54477-54496, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34424475

RESUMO

Oil spills are a major contributor to water contamination, which sets off a significant impact on the environment, biodiversity, and economy. Efficient removal of oil spills is needed for the protection of marine species as well as the environment. Conventional approaches are not efficient enough for oil-water separation; therefore, effective strategies and efficient removal techniques (and materials) must be developed to restore the contaminated marine to its normal ecology. Several research studies have shown that nanotechnology provides efficient features to clean up these oil spills from the water using magnetic nanomaterials, particularly carbon/polymer-based magnetic nanocomposites. Surface modification of these nanomaterials via different techniques render them with salient innovative features. The present review discusses the advantages and limitations of conventional and advanced techniques for the oil spills removal from wastewater. Furthermore, the synthesis of magnetic nanocomposites, their utilization in oil-water separation, and adsorption mechanisms are discussed. Finally, the advancement and future perspectives of magnetic nanocomposites (particularly of carbon and polymer-based magnetic nanocomposites) in environmental remediation are presented.


Assuntos
Nanocompostos , Poluição por Petróleo , Carbono , Fenômenos Magnéticos , Polímeros
9.
J Hazard Mater ; 413: 125375, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33930951

RESUMO

Industrial effluents contain several organic and inorganic contaminants. Among others, dyes and heavy metals introduce a serious threat to drinking waterbodies. These pollutants can be noxious or carcinogenic in nature, and harmful to humans and different aquatic species. Therefore, it is of high importance to remove heavy metals and dyes to reduce their environmental toxicity. This has led to an extensive research for the development of novel materials and techniques for the removal of heavy metals and dyes. One route to the removal of these pollutants is the utilization of magnetic carbon nanotubes (CNT) as adsorbents. Magnetic carbon nanotubes hold remarkable properties such as surface-volume ratio, higher surface area, convenient separation methods, etc. The suitable characteristics of magnetic carbon nanotubes have led them to an extensive search for their utilization in water purification. Along with magnetic carbon nanotubes, the buckypaper (BP) membranes are also favorable due to their unique strength, high porosity, and adsorption capability. However, BP membranes are mostly used for salt removal from the aqueous phase and limited literature shows their applications for removal of heavy metals and dyes. This study focuses on the existence of heavy metal ions and dyes in the aquatic environment, and methods for their removal. Various fabrication approaches for the development of magnetic-CNTs and CNT-based BP membranes are also discussed. With the remarkable separation performance and ultra-high-water flux, magnetic-CNTs, and CNT-based BP membranes have a great potential to be the leading technologies for water treatment in future.

10.
Environ Sci Pollut Res Int ; 28(16): 19563-19588, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33651297

RESUMO

Numerous contaminants in huge amounts are discharged to the environment from various anthropogenic activities. Waterbodies are one of the major receivers of these contaminants. The contaminated water can pose serious threats to humans and animals, by distrubing the ecosystem. In treating the contaminated water, adsorption processes have attained significant maturity due to lower cost, easy operation and environmental friendliness. The adsorption process uses various adsorbent materials and some of emerging adsorbent materials include carbon- and polymer-based magnetic nanocomposites. These hybrid magnetic nanocomposites have attained extensive applications in water treatment technologies due to their magnetic properties as well as combination of unique characteristics of organic and inorganic elements. Carbon- and polymer-related magnetic nanocomposites are more adapted materials for the removal of various kinds of contaminants from waterbodies. These nanocomposites can be produced via different approaches such as filling, pulse-laser irradiation, ball milling, and electro-spinning. This comprehensive review is compiled by reviewing published work of last the latest recent 3 years. The review article extensively focuses on different approaches for producing various carbon- and polymer-based magnetic nanocomposites, their merits and demerits and applications for sustainable water purification. More specifically, use of carbon- and polymer-based magnetic nanocomposites for removal of heavy metal ions and dyes is discussed in detail, critically analyzed and compared with other technologies. In addition, commercial viability in terms of regeneration of adsorbents is also reviewed. Furthermore, the future challenges and prospects in employing magnetic nanocomposites for contaminant removal from various water sources are presented.


Assuntos
Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Ecossistema , Humanos , Fenômenos Magnéticos , Água , Poluentes Químicos da Água/análise
11.
Environ Sci Pollut Res Int ; 28(6): 6324-6348, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33398750

RESUMO

Degradation of amines is a significant issue allied to amine-based carbon dioxide (CO2) absorption in post-combustion CO2 capture. It becomes essential to have a detailed understanding of degradation products for advanced post-combustion CO2 capture technology. Identification and quantification of degradation products of amines help in practicability and environmental assessment of amine-based technology. Gas, liquid, and ion chromatographic techniques are the benchmark tools for qualitative and quantitative analyses of the amines and their derivatives. Among others, gas chromatography has been more in use for this specific application, especially for the identification of degradation products of amines. This review focuses on the critical elucidation of gas chromatographic analysis and development of methods to determine the amine degradation products, highlighting preparation methods for samples and selecting columns and detectors. The choice of detector, column, sample preparation, and method development are reviewed in this manuscript, keeping in view the industry and research applications. Furthermore, obtained results on the quantitative and qualitative analyses using gas chromatography are summarized with future perspectives.


Assuntos
Aminas , Dióxido de Carbono , Carbonatos , Cromatografia Gasosa , Água
12.
Environ Sci Pollut Res Int ; 28(10): 12898-12908, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33095899

RESUMO

Indigenous hematite iron ore was chemically activated as a function of various hydrogen peroxide concentrations (0.5, 1, 1.5, and 2.0 M), activation time, and iron ore size. Adsorption potential was evaluated at various initial arsenic concentrations, contact time, adsorbent dose, and particle size. Maximum 95% removal efficiency was achieved at 600-µm size of iron ore, activated with 0.5 M concentration of hydrogen peroxide at 24 h of activation time. The experimental data were further evaluated through Langmuir and Freundlich isotherms. The maximum 14.46 mg/g of adsorption capacity was observed through Langmuir isotherm. Moreover, adsorption kinetics was evaluated using pseudo-first-order and pseudo-second-order kinetics, and the intra-particle diffusion model. The kinetics of arsenic adsorption was best described by using the pseudo-first-order kinetics with a kinetic rate of 0.621 min-1. The hematite iron ore before and after arsenic adsorption was characterized by XRD, SEM, and EDX.


Assuntos
Arsênio , Poluentes Químicos da Água , Purificação da Água , Adsorção , Arsênio/análise , Compostos Férricos , Concentração de Íons de Hidrogênio , Ferro , Cinética , Água , Poluentes Químicos da Água/análise
13.
Environ Sci Pollut Res Int ; 28(5): 5005-5019, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33241504

RESUMO

Petroleum, coal, and natural gas reservoir were depleting continuously due to an increase in industrialization, which enforced study to identify alternative sources. The next option is the renewable resources which are most important for energy purpose coupled with environmental problem reduction. Microbial fuel cells (MFCs) have become a promising approach to generate cleaner and more sustainable electrical energy. The involvement of various disciplines had been contributing to enhancing the performance of the MFCs. This review covers the performance of MFC along with different wastewater as a substrate in terms of treatment efficiencies as well as for energy generation. Apart from this, effect of various parameters and use of different nanomaterials for performance of MFC were also studied. From the current study, it proves that the use of microbial fuel cell along with the use of nanomaterials could be the waste and energy-related problem-solving approach. MFC could be better in performances based on optimized process parameters for handling any wastewater from industrial process.


Assuntos
Fontes de Energia Bioelétrica , Purificação da Água , Eletricidade , Eletrodos , Águas Residuárias
14.
Environ Sci Pollut Res Int ; 27(35): 43526-43541, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32909134

RESUMO

Substantial discharge of hazardous substances, especially dyes and heavy metal ions to the environment, has become a global concern due to many industries neglecting the environmental protocols in waste management. A massive discharge of contaminantsfrom different anthropogenic activities, can pose alarming threats to living species and adverse effect to the ecosystem stability. In the process of treating the polluted water, various methods and materials are used. Hybrid nanocomposites have attained numerous interest due to the combination of remarkable features of the organic and inorganic elements in a single material. In this regards, carbon and polymer based nanocomposites have gained particular interest because of their tremendous magnetic properties and stability. These nanocomposites can be fabricated using several approaches that include filling, template, hydrothermal, pulsed-laser irradiation, electro-spinning, detonation induced reaction, pyrolysis, ball milling, melt-blending, and many more. Moreover, carbon-based and polymer-based magnetic nanocomposites have been utilized for an extensive number of applications such as removal of heavy metal and dye adsorbents, magnetic resonance imaging, and drug delivery. This review emphasized mainly on the production of magnetic carbon and polymer nanocomposites employing various approaches and their applications in water and wastewater treatment. Furthermore, the future opportunities and challenges in applying magnetic nanocomposites for heavy metal ion and dye removal from water and wastewater treatment plant.


Assuntos
Nanopartículas de Magnetita , Metais Pesados , Nanocompostos , Poluentes Químicos da Água , Purificação da Água , Adsorção , Corantes , Ecossistema , Águas Residuárias
15.
Environ Sci Pollut Res Int ; 27(21): 26239-26248, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32358758

RESUMO

Photo-Fenton oxidation is one of the most promising processes to remove recalcitrant contaminants from industrial wastewater. In this study, we developed a novel heterogeneous catalyst to enhance photo-Fenton oxidation. Multi-composition (Fe-Cu-Zn) on aluminosilicate zeolite (ZSM-5) was prepared using a chemical process. Subsequently, the synthesized catalyst was characterized by using X-ray diffraction (XRD), field emission scanning electron microscope (FESEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray (spectroscopy) (EDX), and Brunauer-Emmett-Teller (BET). Activity of the synthesized catalyst is analysed to degrade an azo dye, methyl orange. Taguchi method is used to optimize color removal and total carbon content (TOC) removal. The dye completely degraded, and 76% of TOC removal was obtained at optimized process conditions. The amount of catalyst required for the desired degradation of dye significantly reduced up to 92% and 30% compared to conventional homogenous and heterogeneous Fenton oxidation processes, respectively.


Assuntos
Ferro , Águas Residuárias , Compostos Azo , Catálise , Zinco
16.
Environ Sci Pollut Res Int ; 26(29): 29606-29619, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31452125

RESUMO

Biomass is primary source of energy for household in rural communities. Developing countries are focusing on increasing utilization of indigenous energy resources for energy security and to achieve sustainable development goal. Combustion of solid biomass is the primary approach for utilizing biomass to generate electricity and heat. Sixty-eight percent of population of Pakistan is living in rural areas while 30% population is still without electricity. The traditional household appliances used for cooking and heating are less efficient, more hazardous to users, and more damaging to the environment. Low carbon energy system prerequisites access to modern energy services. This paper presents an assessment of biomass resources potential in Pakistan as renewable energy resources and reviews potentials to adopt efficient use of biomass for cooking, heating, and small decentralized electricity generation. Objective of this study is to increase the sustainability of the use of biomass as source of energy in developing countries like Pakistan by an integrating energy-efficient and modern appliances and technologies that fit into a sustainable development path. Promotion of cleaner technologies and efficient use of biomass energy constitute appropriate strategies to mitigate global climate, health risks, and help in attending the targets set by sustainable development goal (SDG) to confirm worldwide access to reliable, affordable, and modern energy services by 2030.


Assuntos
Biocombustíveis , Culinária/instrumentação , Biocombustíveis/economia , Biomassa , Carbono , Custos e Análise de Custo , Eletricidade , Características da Família , Paquistão , Energia Renovável/economia , População Rural , Desenvolvimento Sustentável , Madeira
17.
Chem Cent J ; 11: 10, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28184241

RESUMO

Amine degradation is the main significant problems in amine-based post-combustion CO2 capture, causes foaming, increase in viscosity, corrosion, fouling as well as environmental issues. Therefore it is very important to develop the most efficient solvent with high thermal and chemical stability. This study investigated thermal degradation of aqueous 30% 2-aminoethylethanolamine (AEEA) using 316 stainless steel cylinders in the presence and absence of CO2 for 4 weeks. The degradation products were identified by gas chromatography mass spectrometry (GC/MS) and liquid chromatography-time-of-flight-mass spectrometry (LC-QTOF/MS). The results showed AEEA is stable in the absence of CO2, while in the presence of CO2 AEEA showed to be very unstable and numbers of degradation products were identified. 1-(2-Hydroxyethyl)-2-imidazolidinone (HEIA) was the most abundance degradation product. A possible mechanism for the thermal degradation of AEEA has been developed to explain the formation of degradation products. In addition, the reaction energy of formation of the most abundance degradation product HEIA was calculated using quantum mechanical calculation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...